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A fast synthetic type iterative model is proposed to speed up the slow convergence of dis-
crete velocity algorithms for solving linear kinetic equations on triangular lattices. The effi-
ciency of the scheme is verified both theoretically by a discrete Fourier stability analysis
and computationally by solving a rarefied gas flow problem. The stability analysis of the
discrete kinetic equations yields the spectral radius of the typical and the proposed itera-
tive algorithms and reveal the drastically improved performance of the latter one for any
grid resolution. This is the first time that stability analysis of the full discrete kinetic equa-
tions related to rarefied gas theory is formulated, providing the detailed dependency of the
iteration scheme on the discretization parameters in the phase space. The corresponding
characteristics of the model deduced by solving numerically the rarefied gas flow through
a duct with triangular cross section are in complete agreement with the theoretical find-
ings. The proposed approach may open a way for fast computation of rarefied gas flows
on complex geometries in the whole range of gas rarefaction including the hydrodynamic
regime.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Fully deterministic discrete velocity (or ordinates) algorithms have been extensively used in the direct numerical solution
of the Boltzmann equation or alternatively of kinetic model equations [1–4]. Of course, the involved computational effort is
significant since solving for the unknown distribution function, in a general-geometry problem, would require a six-dimen-
sional phase space grid (three variables in the physical space and three variables in the molecular velocity space), which im-
poses severe demands on computer resources (time and memory). In spite of this, the discrete velocity (DV) method is
considered as an efficient approach for solving problems in rarefied gas dynamics [5]. Even more, in certain physical systems
where, due to the flow conditions and parameters, linearization of the governing kinetic equations and reduction of the num-
ber of spatial and velocity coordinates are permitted, the DV method has shown to be probably the most powerful compu-
tational scheme for providing reliable results in the whole range of the Knudsen number [6,7]. Such problems commonly
appear in several technological fields including the emerging field of nano and microfluidics [8].

The direct differencing of kinetic equations implementing the discrete velocity approach yields a discretized coupled
integro–differential system, which is solved in an iterative manner. The convergence speed of this iterative algorithm is sat-
isfactory in highly rarefied atmospheres (large Knudsen numbers) but it slows down significantly as the atmosphere be-
comes less rarefied and finally, it becomes very slow at intermediate and small Knudsen numbers (part of the transition
as well as in the slip regimes). This slow convergence has been recently circumvented by introducing a synthetic acceleration
methodology to speed up the DV convergence rate in dense atmospheres [9–11]. That is an important advancement of the
DV algorithm since it upgrades its overall performance and it allows its efficient implementation in all flow regimes. The
. All rights reserved.
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discretized version of this rapidly convergent iteration scheme has been applied so far to flow configurations, which can be
adequately described on standard orthogonal grids.

It is important to note that fast iterative algorithms for discrete ordinates particle calculations have been originated and
then extensively developed and efficiently implemented in the field of neutron and radiative transfer [12,13]. However, cor-
responding work in rarefied gas dynamics is very limited.

In the present work a fast iterative algorithm is proposed for the efficient computational solution of linear kinetic equa-
tions on triangular lattices. This non-regular lattice consisting of triangular grid elements has been recently introduced [14]
and it is very useful for generalizing kinetic type solutions to rarefied flows in domains with complex boundaries. The dis-
cretization of the accelerated scheme on such non-standard grids is not trivial. Also, the convergence rates of both the typical
and accelerated discrete algorithms are estimated by a discrete Fourier stability analysis. As far as the authors are aware of,
this is the first time that a stability analysis of discrete kinetic equations in the field of rarefied gas dynamics is presented. It
is found theoretically that the accelerated method performs significantly faster than the typical one. It is also shown that the
discrete models with increasing resolution rapidly reach the convergence rate of the continuous equations. The theoretical
findings are verified computationally be solving, as a benchmark problem, the flow of a gas through a triangular channel,
described by the linearized two-dimensional Bhatnagar–Gross–Krook (BGK) kinetic equation [14]. The dependency of the
iteration scheme on the discretization parameters in the phase space is investigated. The simulation results are in agreement
with the theoretical findings.

The presented work can be applied to more advanced kinetic model equations, such as the ES and the Shakhov models for
single gases [15], as well as the McCormack model for gaseous mixtures [16,17], in a straightforward manner.
2. Iteration schemes of kinetic equations

A description of the typical and upgraded (acceleration) iteration schemes applied to the continuous form of the govern-
ing kinetic equations is provided. In addition, the model problem used as a benchmark to test the overall efficiency of the
proposed scheme is introduced. All quantities are in dimensionless form.

2.1. Kinetic iteration

We base our discussion on the two-dimensional linearized BGK model equation
c � rf ðtþ1=2Þðc; h; xÞ þ df ðtþ1=2Þðc; h; xÞ ¼ dFðtÞ0;0ðxÞ þ SðxÞ; ð1Þ
with
Fðtþ1Þ
0;0 ðxÞ ¼

1
p

Z 2p

0

Z 1

0
f ðtþ1=2Þðc; h; xÞ expð�c2Þcdcdh; ð2Þ
which describes the fully developed flow of a gas through a channel of arbitrary cross section [14,18]. In Eqs. (1) and (2),
f(t+1/2)(c,h,x) is the unknown distribution function, x = (x1,x2) is the position vector, c M (c,h) is the molecular velocity vec-
tor with c and h denoting the magnitude and the polar angle respectively, S(x) is an optional source term, FðtÞ0;0ðxÞ is the
bulk velocity and t is the iteration index. It is noted that the bulk velocity corresponds to the zeroth-order Hermitian mo-
ment of the distribution function. Finally, d, known as the rarefaction parameter, is a very important dimensionless flow
quantity, which characterizes the rarefaction degree of the physical system. The rarefaction parameter is proportional to
the inverse Knudsen number. Roughly speaking, the flow is in the free molecular regime for d < 0.1, in the transition re-
gime for 0.1 6 d 6 10 and in the hydrodynamic regime for d > 10.

Along the boundary of the flow domain, the Maxwell diffuse reflection model is implemented. Then, the distribution func-
tion representing particles departing from the wall is written by
f ðc; x̂Þ ¼ 0; for c � n > 0; ð3Þ
where x̂ denotes the boundary position vector and n is the unit normal vector pointing towards the interior of the flow do-
main. A quantity of practical interest, used later on, is the dimensionless flow rate
G ¼ 2
A

Z Z
A

F0;0ðxÞdx1dx2: ð4Þ
Here, A is the area of the cross section. It is assumed that the hydrodynamic diameter of the channel Dh = 4A/C is unity,
where C denotes the perimeter of the channel.

The integro–differential system defined by Eqs. (1) and (2) is solved in an iterative manner as indicated by the iteration
index t. In particular at the beginning of each iteration, one introduces an old estimate FðtÞ0;0 in the right hand side of Eq. (1).
Using this estimate Eq. (1) is solved to obtain an estimate for f(t+1/2), which is introduced into Eq. (2) to obtain the new esti-
mate Fðtþ1Þ

0;0 . This iteration process, which is named ‘‘kinetic iteration” is repeated until the difference between successive esti-
mates of FðtÞ0;0 is less than a pre-assigned convergence criterion �. It has been shown that the above described iteration process
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converges fast for small values of d and unacceptably slow for large values of d [9,10,17]. This situation is remedied by the
fast iteration scheme introduced in the following subsection.
2.2. Synthetic iteration

The rapidly convergent iteration scheme involves an additional step in each iteration. In particular, following the calcu-
lated value of f(t+1/2)(c,h,x) from Eq. (1), the updated velocity Fðtþ1Þ

0;0 , instead of applying Eq. (2), is obtained by solving the dif-
fusion equation
Fig. 1.
The ang
DFðtþ1Þ
0;0 ðxÞ ¼ �

1
2
@2

x1
Fðtþ1=2Þ

2;0 ðxÞ � 1
2
@2

x2
Fðtþ1=2Þ

0;2 ðxÞ � @x1@x2 Fðtþ1=2Þ
1;1 ðxÞ � dSðxÞ; ð5Þ
where D ¼ @2
x1
þ @2

x2
. This equation is derived by taking the zeroth-and first-order moments of Eq. (1) and manipulating

accordingly the resulting moment equations [9,11]. Also, at the right hand side of Eq. (5) the higher-order moments
F2,0,F0,2 and F1,1 are defined by
Fðtþ1=2Þ
m;n ðxÞ ¼ 1

p

Z 2p

0

Z 1

0
f ðtþ1=2Þðc; h; xÞHm;nðcÞ expð�c2Þcdcdh; ð6Þ
with m,n = 0,1,2 and m + n = 2. In Eq. (6), Hm, n(c) = Hm (c cosh)Hn(c sinh) stands for the two-dimensional Hermite polynomial
with Hm(l) and Hn(g) being the mth and nth Hermite polynomial in one dimension, respectively.

The iteration process, which now is consisting of two stages, is defined as follows. At the beginning of an iteration, one has

the value of FðtÞ0;0, known from the previous iteration. In the first stage of the iteration, Eq. (1), is solved to yield f(t+1/2)(c,h,x)
and then the higher-order moments are calculated from Eq. (6). In the second stage of an iteration, Eq. (5) is solved for the

updated velocity Fðtþ1Þ
0;0 . The iteration process, which is named ‘‘synthetic iteration” is terminated when the convergence cri-

terion imposed on FðtÞ0;0 is fulfilled. It is obvious that a synthetic compared to a kinetic iteration is more costly. However, as it is
shown later, the number of required iterations in the synthetic scheme is significantly reduced and therefore, the overall effi-
ciency of the scheme is increased.

It is noted that the synthetic iteration procedure defined by Eq. (5) is used in the interior nodes of the flow domain. There-
fore, the zeroth-order moment is not accelerated at the boundaries and its estimate is based on the values of the distribution
function at the boundaries obtained at the first stage of the iteration. This treatment does not cause any significant deviation
in the overall performance of the synthetic scheme when the discretized model is considered since the number of boundary
nodes is negligible compared to the interior ones.
3. Discretization

The discretziation procedure of the kinetic and synthetic equations solved on a triangular grid is presented. Both spatial
and molecular velocity spaces are discretized. The discretized spatial and velocity coordinates are denoted by xp and (cq,hr)
respectively, with 1 6 p 6 L,1 6 q 6M and 1 6 r 6 N. Here, L is the total number of spatial grid points and M � N is the num-
ber of the discrete velocity vectors, with M and N denoting the magnitudes and the polar angles respectively used in the
discretization.

Fig. 1, presents one computational cell of the triangular grid, consisting of the central node A, with spatial coordinate xp

and six surrounding nodes connected to the central one via the spatial vectors rj, j = 1, . . . ,6. The spatial coordinates of the six
B
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γ1 r1
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Geometry of triangular grid. The central node A is surrounded by six neighboring nodes, while B indicates the upwind point for the velocity angle hr.
les of all triangles are denoted by ck,k = 1,2,3.
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surrounding nodes are xp + rj. Also, a typical velocity vector with magnitude 0 < cq <1 and polar angle 0 6 hr < 2p, passing
through the central node A, is shown.

3.1. Discrete kinetic iteration

The discretized form of Eq. (1) reads
cq

DðhrÞ
f ðtþ1=2Þðcq; hr ; xpÞ �

X6

j¼1

ajðhrÞf ðtþ1=2Þðcq; hr; xp þ rjÞ
" #

þ df ðtþ1=2Þðcq; hr; xpÞ ¼ dFðtÞ0;0ðxpÞ þ SðxpÞ: ð7Þ
In this equation, the first term in the bracket on the left hand side is the upwind finite-difference approximation of the
streaming term in Eq. (1). Specifically, D(hr) is the spacing between the central node A and the upwind point B shown in
Fig. 1, while aj(hr) are weight functions related to the linear interpolation used to get the distribution function at the upwind
point B in terms of the distribution functions at the two adjacent nodes. For each angle 0 6 hr < 2p, with 1 6 r 6 N, there are
only two non-zero ai(hr) weights from the six-element set. The explicit expressions of aj(hr) and D(hr) are presented in Appen-
dix A.

In the discretized formulation, the updated value of the macroscopic velocity is obtained from Eq. (2) such that
Fðtþ1Þ
0;0 ðxpÞ ¼

2
N

XM

q¼1

XN

r¼1

wqf ðtþ1=2Þðcq; hr ; xpÞcq: ð8Þ
In Eq. (8), the integration over the velocity polar angle and magnitude is performed based on the trapezoidal rule and the
Gauss–Legendre quadrature with wq denoting the quadrature weights, respectively.

3.2. Discrete synthetic iteration

Next, we turn our attention to the synthetic accelerated equation. The discrete form of Eq. (5) is given by
X6

j¼1

b1;j þ b2;j
� �

Fðtþ1Þ
0;0 ðxp þ rjÞ � Fðtþ1Þ

0;0 ðxpÞ
h i

¼ �1
2

X6

j¼1

b1;j Fðtþ1=2Þ
2;0 ðxp þ rjÞ � Fðtþ1=2Þ

2;0 ðxpÞ
h i

� 1
2

X6

j¼1

b2;j Fðtþ1=2Þ
0;2 ðxp þ rjÞ � Fðtþ1=2Þ

0;2 ðxpÞ
h i

�
X6

j¼1

b3;j Fðtþ1=2Þ
1;1 ðxp þ rjÞ � Fðtþ1=2Þ

1;1 ðxpÞ
h i

� dSðxpÞ: ð9Þ
This equation is obtained by using the finite-difference approximation of the spatial derivatives in Eq. (5). The finite-differ-
ence method is based on the values of the macroscopic quantities at the central and six surrounding nodes. In this descrip-
tion, bp, j are weight functions relevant to the second-order spatial derivatives. These weights are obtained by the Taylor
expansion of the spatially dependent quantities around the central node. The explicit expressions of the weights, bp, j, and
the details of the derivation are presented in the Appendix B. The linear algebraic system defined by Eq. (9) is solved using
a successive over-relaxation solver.

Finally, the integral expression of the Hermite moments in Eq. (6) is replaced by the summation
Fðtþ1=2Þ
m;n ðxpÞ ¼

2
N

XM

q¼1

XN

r¼1

wqf ðtþ1=2Þðcq; hr; xpÞHm;nðcq; hrÞcq: ð10Þ
It is noted that Eq. (10) is valid for the higher-order moments Fðtþ1Þ
2;0 ; Fðtþ1Þ

0;2 and Fðtþ1Þ
1;1 , while the zeroth-order, i.e., the velocity

Fðtþ1Þ
0;0 , is obtained solving Eq. (9).

4. Discrete stability analysis

In this section, the convergence rate of both the discrete kinetic and synthetic iteration schemes is studied by applying a
Fourier stability analysis. This analysis is used to estimate theoretically the spectral radius of the iterative methods, as well as
their dependency on the discretization parameters. Now, the functions f(t)(cq,hr,xp) and FðtÞm;nðxpÞ are considered as perturba-
tions between successive iterates satisfying the discrete equations formulated in Section 3, with S(xp) = 0.

To begin with, we follow [9,12,13] and consider the single Fourier mode ansatz
f ðtþ1=2Þðcq; hr ; xpÞ ¼ xðkÞtfFðcq; hr ;kÞ expðikxpÞ ð11Þ
and
FðtÞ0;0ðxpÞ ¼ xðkÞt expðikxpÞ; ð12Þ
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where fF(cq,hr,k) is the Fourier amplitude and x(k) is the iteration eigenvalue corresponding to the wave number k, while
Fðtþ1Þ
0;0 ðxpÞ ¼ xðkÞFðtÞ0;0ðxpÞ ¼ xðkÞtþ1 expðikxpÞ: ð13Þ
Our objective in this section is to derive closed form expressions for the eigenvalues x(k) for the kinetic and the synthetic
iteration methods. The eigenvalues x(k) describe the convergence behavior of the iteration method. Then, the spectral ra-
dius of the two iterations maps may be estimated by finding the upper bound for x(k) according to
r ¼ sup jxðkÞj ð14Þ
and consequently the convergence rates of the kinetic and synthetic iteration schemes are determined.

4.1. Eigenvalues of kinetic iteration

First, the eigenvalues of the kinetic iteration method defined by Eqs. (7) and (8) are examined. By substituting Eqs. (11)
and (12) into the discrete kinetic equation Eq. (7), with S = 0, we obtain the Fourier mode eigenvector
fFðcq; hr ;kÞ ¼
cq

dDðhrÞ
1� Aðhr ;kÞð Þ þ 1

� ��1

: ð15Þ
Here, we have introduced the function
Aðhr;kÞ ¼
X6

j¼1

ajðhrÞ expðikrjÞ: ð16Þ
Next, substituting Eq. (11), with fF given by Eqs. (15) and (13) into Eq. (8), yields
xKðkÞ ¼
2
N

XN

r¼1

XM

q¼1

wq
cq

dDðhrÞ
1� Aðhr;kÞð Þ þ 1

� ��1

cq: ð17Þ
Here, the K index denotes the eigenvalues for the kinetic iteration scheme.

4.2. Eigenvalues of synthetic iteration

Secondly, the eigenvalues of the synthetic iteration method defined by Eqs. (7), (9) and (10) are estimated. It is easily seen
that the Fourier mode eigenvector fF given by Eq. (15) remains the same as before. Substituting Eq. (11) into Eq. (10), which
provides the higher non-accelerated Hermitian moments, results to
Fðtþ1=2Þ
m;n ðxpÞ ¼ xðkÞtUm;nðkÞ expðikxpÞ; ð18Þ
where
Um;nðkÞ ¼
2
N

XN

r¼1

XM

q¼1

wqfFðcq; hr;kÞHm;nðcq; hrÞcq; ð19Þ
with m,n = 0,1,2 and m + n = 2. Then, Eqs. (13) and (19) are substituted into the left and right hand side respectively of Eq. (9)
to deduce after some routine manipulation the following closed form expression for the eigenvalues of the synthetic itera-
tion scheme
xSðkÞ ¼ �
1
2

B1ðkÞU2;0ðkÞ þ B2ðkÞU0;2ðkÞ þ 2B3ðkÞU1;1ðkÞ½ � � B1ðkÞ þ B2ðkÞ½ ��1
: ð20Þ
Here, we have introduced the function
BpðkÞ ¼
X6

j¼1

bp;j½expðikrjÞ � 1�; ð21Þ
with p = 1,2,3, while the S index denotes the eigenvalues for the synthetic iteration method.

4.3. Properties of eigenvalues

Having established closed form expressions for xK(k) and xS(k), in this subsection some properties of these iteration
eigenvalues are derived.

It may be shown that the eigenvalues of the discrete iteration schemes are always real. In the kinetic iteration case, the
eigenvalue is obtained by Eq. (17). In regard to the complex nature of the eigenvalue, the main quantity is
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nðhr ;kÞ ¼
1� Aðhr ;kÞ

DðhrÞ
: ð22Þ
It follows from the properties ai(hr) = ai+3(hr � p) and ri = � ri+3 for i = 1,2,3 that
Re½Aðhr ;kÞ� ¼ Re½Aðhr þ p;kÞ�; ð23Þ
Im½Aðhr;kÞ� ¼ �Im½Aðhr þ p;kÞ�: ð24Þ
These equations together with the property D(hr) = D(hr + p) yield
Re½nðhr ;kÞ� ¼ Re½nðhr þ p;kÞ�; ð25Þ
Im½nðhr ;kÞ� ¼ �Im½nðhr þ p;kÞ�: ð26Þ
Next, substituting Eqs. (25) and (26) into the expression of the eigenvalue, Eq. (17), it is readily deduced that xK(k) is real.
In the synthetic iteration case, the eigenvalue is obtained by Eq. (20). From symmetry principles, one can obtain that
Im½BpðkÞ� ¼ 0; ð27Þ
for p = 1,2,3. In addition, the Hermite polynomials have the following property
Hm;nðcq; hrÞ ¼ Hm;nðcq; hr þ pÞ; ð28Þ
for m,n = 0,1,2 and m + n = 2. Using Eqs. (27) and (28) together with Eqs. (25) and (26) in Eq. (20), straightforward calculation
shows that xS(k) is real. It is mentioned that the eigenvalues in the continuous situation are also real. Hence, this property
survives in the presented discrete method as well.

Also, the continuous limit of the eigenvalues as the resolution tends infinitely fine is presented. In order to get the con-
tinuous limit, we deduce the limiting value of n(hr,k), which causes the discrete effect in the eigenvalues. We define the res-
olution h = r1 as the base of the triangle element. The other spatial vectors used in the discretization are of the same order as
r1, i.e., rj � O(h), j = 1, . . . ,6. In this way, exp(ikrj) is expanded up to O(h2) such that
expðikrjÞ ¼ 1þ ikrj þ Oðh2Þ: ð29Þ
As a consequence, it is found that
Aðhr;kÞ ¼ 1þ
X6

j¼1

ajðhrÞikrj þ Oðh2Þ: ð30Þ
Then, the limiting value of n(hr,k) as h ? 0 is
lim
h!0

nðhr;kÞ ¼ lim
h!0

1� Aðhr ;kÞ
DðhrÞ

¼ �

P6
j¼1

ajðhrÞikrj

DðhrÞ
¼ ike; ð31Þ
where e = [cos(hr), sin(hr)] is the unit vector in the direction of c. In addition, we take the limit M,N ?1. In this way, it is
obtained from Eqs. (17) and (20) that in the continuum limit
xKðkÞ ¼
1ffiffiffiffi
p
p

Z 1

�1

e�c2

c2ðk=dÞ2 þ 1
dc ð32Þ
and
xSðkÞ ¼
1ffiffiffiffi
p
p

Z 1

�1

1� 2c2

c2ðk=dÞ2 þ 1
e�c2

dc; ð33Þ
respectively. These are the limiting values of the eigenvalues and are identical to previous findings [9,11], based on the con-
tinuous form of the equations.

5. Results

Both theoretical and computational results on the convergence rates of the two iteration schemes are provided. The for-
mer ones are based on the prescribed discrete Fourier stability analysis, while the latter ones on the numerical solution of the
model problem with both algorithms.

5.1. Discrete effects on the convergence rates

The theoretical convergence behavior of the kinetic and synthetic iteration schemes is shown in Figs. 2–4, where the
eigenvalues of the two models, given by Eqs. (17) and (20), are plotted in terms of the wave number for different values
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Fig. 2. Eigenvalues x(k) versus wave number k at different values of the rarefaction parameter d. The resolution is fixed at h = 10�3 and M � N = 16 � 144.
Symbols h,M,e represent kinetic results for d = 1,10 and 30, while j,N,� represent the corresponding synthetic results.
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Fig. 3. Eigenvalues x(k) versus wave number k at different values of spatial resolution h. The rarefaction parameter and the angular resolution are fixed at
d = 10 and N �M = 16 � 144, respectively. Symbols h,M,e represent kinetic results for h = 10�1,10�3 and h ? 0 (continuous limit), while j,N,� represent
the corresponding synthetic results.
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Fig. 4. Eigenvalues x(k) versus wave number k at different values of the angular resolution M � N. The rarefaction parameter and the spatial resolution are
fixed at d = 3 and h = 10�3, respectively. Symbols h,M represent kinetic results for M � N = 16 � 144 and 8 � 24, while j,N represent the corresponding
synthetic results.
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of flow and discretization parameters. The involved parameters include the rarefaction parameter d, which is a flow param-
eter, and the grid parameters h and M � N in the physical and molecular velocity spaces, respectively. In all three figures, the
empty and filled symbols denote kinetic and synthetic results, respectively. Also, the wave number is pointed to the direction
of x1, with its Cartesian components given by (k,0). In all cases, it is clearly seen that the kinetic iteration suppresses the error
modes in the region of large wave numbers k� 0, but not the error modes in the region k � 0. On the contrary, the synthetic
iteration suppresses the error modes in the whole spectrum of the wave number, therefore it is expected to converge faster.

Before we study further Figs. 2–4, it is useful at this stage to comment on the spectral radius of the two models. It is seen
(Figs. 2–4) that for the kinetic iteration case, the spectral radius is always unity, i.e., rK = 1. This property is the main reason
of the very slow convergence of the typical iterative DV scheme in part of the transition and in the slip regimes. However, by
using the synthetic iteration method, the spectral radius is significantly reduced. In Table 1, the spectral radius rS for the
synthetic iteration scheme is tabulated for different values of h and d, while M � N is fixed at 16 � 144. It is seen that as
h is decreased, while d is kept constant, the spectral radius is increased. This is more evident at large values of d. Also, as
d is increased, while h is kept constant, the spectral radius is decreased. This is more evident at large values of h.

It is noted that in the continuous limit (h ? 0) according to Eq. (33) rS = 0.320. It is clearly seen in Table 1 that the discrete
spectral radii converge to the continuous result as h ? 0. It is also seen that as d is increased finer resolution is required to
obtain the continuous limit. This is easily explained since as d is increased the spectral radius happens to appear at larger
wave numbers or alternatively at smaller wave lengths, which require finer grid resolution. The results, shown in Table 1,
for rS in terms of d and h are useful for the theoretical justification of discrete synthetic simulations.

Next, studying in detail Figs. 2–4, a more comprehensive and complete description of the dependency of the convergence
rates on d,h and M � N in the whole spectrum of the wave number may be deduced. In Fig. 2, the kinetic and synthetic eigen-
values x(k) are shown for d equal to 1,10 and 30, while the grid resolution is fixed at h = 10�3 and M � N = 16 � 144. In this
figure, the effect of the rarefaction parameter d is observed. It is clear that as d is increased (i.e., the atmosphere becomes less
rarefied) the convergence rate exhibit slower attenuation as a function of the wave number. In the case of the kinetic iter-
ation, where the spectral radius is unity, this behavior is the main reason of the slow convergence rate at large values of d. In
the case of the synthetic iteration, this behavior has no effect on the convergence rate since the discrete spectral radius is
always less than 0.320.

In Fig. 3, the effect of the spatial discretization is observed. Here, results are presented for a coarse grid (h = 10�1), for a
fine grid (h = 10�3) and for the limiting case h ? 0 (continuous limit), with d = 10 and M � N = 16 � 144. The convergence
rates show the same qualitative behavior at the different values of spatial resolution. Also the quantitative differences be-
tween h = 10�1 and h = 10�3 are clearly indicated. When the resolution is sufficiently small, x(k) obtained from the discrete
model reaches the value of the continuous situation presented by Eqs. (32) and (33). It is seen that at h = 10�3, the difference
is already invisible between the two cases. This result clearly demonstrates that the discrete velocity model converges to the
continuous model formulation.

In Fig. 4, the effect of the molecular velocity discretization is observed by presenting results for M � N = 16 � 144 and
8 � 24, with d = 3 and h = 10�3. There is very small deviation between the corresponding curves when the velocity resolution
changes. In general, as d is decreased the dependency of the convergence rate on the velocity discretization is increased.
However, it may be concluded that the presented results are typical and that the angular resolution has a little effect on
the eigenvalues of the iteration map.
5.2. Computational performance

Simulations have been carried out to investigate and compare the computational performance of the two methods. The
rarefied gas flow problem described in Section 2 for a channel with equilateral triangular cross section has been solved. The
source term is S(x) = � 1/2. In all simulations, we have used L = 500500,M = 16 and N = 72 and a convergence error � = —
G(t+1) � G(t)— < 10�8.

In Table 2, the number of iterations, the computational time and the flow rate in the whole range of the rarefaction
parameter are presented. The results for the kinetic and synthetic methods are indicated by the K and S labels respectively.
The number of iterations are given in the 2nd and 3rd column of Table 2. It is observed that as d is increased the number of
kinetic iterations is monotonically increased, while the number of synthetic iterations is initially increased, then for
Table 1
Discrete spectral radius rS of synthetic scheme.

h d

0.1 1.0 5.0 10.0 50.0

10�1 0.318 0.303 0.253 0.212 0.100
10�2 0.319 0.318 0.311 0.303 0.253
10�3 0.320 0.319 0.319 0.318 0.311
10�4 0.320 0.320 0.319 0.319 0.319



Table 2
Computational performance of the kinetic (K) and synthetic (S) schemes.

d Iterations CPU time (s) � G � Gs

K S K S K S

0.0 2 2 87 90 0.9287 0.9287
0.1 9 9 394 1246 0.8712 0.8712
1.0 25 22 1126 3613 0.8320 0.8321
3.0 62 33 2814 5383 0.9292 0.9305
5.0 111 35 5007 5724 1.0560 1.0595
7.0 171 35 7719 5728 1.1905 1.1969

10.0 283 35 12441 5719 1.3977 1.4095
30.0 1692 35 75773 5704 2.7996 2.8800
50.0 4154 35 184735 5721 4.1605 4.3709 4.3556

100.0 34 4439 8.1190 8.1076
500.0 31 3901 3.8139(+1) 3.8109(+1)
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3 6 d 6 50 remains stable and equal to the moderate number of 35 iterations and finally, at higher value of d, the number of
iterations is slightly decreased. This behavior at large d is expected since the flow is in the hydrodynamic regime and the
diffusion equation provides, by itself, a fairly good description of the flow. Analogous behavior is observed, in the 4th and
5th column of Table 2, for the CPU time. Even though the CPU time of a synthetic iteration is larger than the CPU time of
a kinetic iteration, the overall CPU time of the synthetic scheme, as d is increased is much less than the corresponding
CPU time of the kinetic scheme. This is clearly due to the fact that in the synthetic algorithm the required number of iter-
ations is drastically reduced.

Looking at the 6th and 7th columns of Table 2 it is seen that the flow rates G computed by the two algorithms are in gen-
eral in good agreement. It is clear however, that the discrepancy between the results is increased as d is increased (e.g. for
d = 1 there is agreement up to 4 significant figures, while at d = 10 the agreement drops down to 3 significant figures, within
± 1 in the last digit). To clarify which algorithm provides the correct results a comparison with semi-analytical results ob-
tained by solving the Stokes equation with first-order slip boundary conditions has been performed for d = 50,100 and
500. For these values of d the slip solution is reliable [14]. It has been found that the flow rates computed by the synthetic
iteration scheme are in agreement up to three significant figures with the slip results denoted by Gs and shown in the last
column of Table 2. This demonstrates the very good overall computational efficiency (speed and accuracy) of the synthetic
scheme in the whole range of rarefaction including the hydrodynamic regime.

Finally, the computational performance versus the relative convergence criterion � is examined. In Figs. 5 and 6, the
required number of iterations and the overall CPU time respectively are presented as a function of � at two values of the
rarefaction parameter, namely d = 3 and 50. It is observed that for d = 3 both schemes are computationally equivalent.
However, for d = 50 the superiority of the synthetic scheme is clear since the number of iterations and the CPU time
are reduced by one to two orders. Comparing these results with previous ones in orthogonal lattices [9], it may be con-
cluded that the proposed discrete synthetic iterative scheme on triangular lattices performs computationally equally
well.
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Fig. 5. Number of iterations versus convergence criterion (�). Symbols h,M represent kinetic results for d = 3 and 50, while j,N represent the corresponding
synthetic results.
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Fig. 6. CPU time in seconds versus convergence criterion (�). Symbols h,M represent kinetic results for d = 3 and 50 while j,N represent the corresponding
synthetic results.
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6. Concluding remarks

A fast synthetic iterative discrete velocity algorithm for solving kinetic model equations on triangular lattices has been
proposed. A discrete Fourier stability analysis of the synthetic iterative and the typical kinetic schemes has been formulated
and closed form expressions for the spectral radius have been derived. The effects of the rarefaction parameter characterizing
the physical system and of the grid resolution both in the physical and molecular velocity spaces have been theoretically
studied. It has been found that in all cases the convergence rate of the proposed synthetic algorithm is significantly faster
than the corresponding one of the typical scheme. Also, the proposed model has been checked by solving the flow of a rar-
efied gas on a triangular grid. The simulation results are in very good agreement with the theoretical ones verifying the com-
putational efficiency of the synthetic scheme in the whole range of gas rarefaction. The proposed model may stimulate the
development of discrete kinetic models on non-standard geometries. In addition, the established discrete stability analysis
can be used for other discrete models as well.
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Appendix A. Discretization coefficients for the kinetic equation

The coefficients ai(hr) and the distance D(hr), associated to the upwind finite-difference scheme used in Eq. (7), are defined
in a compact form. These quantities can be defined by using the vector bi = [c1,c1 + c3,p,p + c1,p + c1 + c3,2p] and the sine
theorem for the geometry given in Fig 1. It is seen that the six angle elements of bi are the upper bounds of the six polar
angle sectors of hr.

The coefficients ai(hr) are defined to be periodic, i.e., ai(hr) = ai(hr + 2p). In addition, they have the property
ai(hr) = ai+3(hr � p) for i = 1,2,3. Therefore, ai(hr) are defined only in the p 6 hr < 2p angle interval. As it has been mentioned,
there are two non-zero elements from ai(hr) for each hr. These two adjacent weights are defined by
aiðhrÞ ¼
sinðhr � biÞ

sinðhr � biþ1Þ
riþ1

riþ2
ð34Þ
and
aiþ1ðhrÞ ¼
sinðhr � biþ2Þ
sinðhr � biþ1Þ

riþ3

riþ2
; ð35Þ
for bi+2 6 hr < bi+3, where i = 1,2,3. These i indices recover the selected angle interval via the bi bounds. The distance D(hr) is
also periodic, i.e., D(hr) = D(hr + p). For the sector p 6 hr < 2p recovered with the indices i = 4,5,6 in bi, it is deduced that
DðhrÞ ¼
sinðbi�1 � bi�2Þ
sinðhr � bi�2Þ

ri; for bi�1 6 hr < bi; ð36Þ
while for 0 6 hr < p the periodicity property can be applied.
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Appendix B. Discretization coefficients for the diffusion equation

The coefficients bp, j, j = 1, . . . ,6 for the diffuse equation Eq. (9) can be obtained via Taylor expansion. Let us consider a func-
tion g(x) Taylor expanded up to second-order around the centre node denoted by xp. At the six surrounding nodes, the func-
tion is obtained by
gðxp þ r1Þ ¼ gðxpÞ þ @x1 gðxpÞr1x1 þ
1
2
@2

x1
gðxpÞr2

1x1
; ð37Þ

gðxp þ r2Þ ¼ gðxpÞ þ @x1 gðxpÞr2x1 þ @x2 gðxpÞr2x2 þ
1
2
@2

x1
gðxpÞr2

2x1
þ 1

2
@2

x2
gðxpÞr2

2x2
þ @x1@x2 gðxpÞr2x1 r2x2 ; ð38Þ

gðxp þ r3Þ ¼ gðxpÞ þ @x1 gðxpÞr3x1 þ @x2 gðxpÞr3x2 þ
1
2
@2

x1
gðxpÞr2

3x1
þ 1

2
@2

x2
gðxpÞr2

3x2
þ @x1@x2 gðxpÞr3x1 r3x2 ; ð39Þ

gðxp þ r4Þ ¼ gðxpÞ þ @x1 gðxpÞr4x1 þ
1
2
@2

x1
gðxpÞr2

4x1
; ð40Þ

gðxp þ r5Þ ¼ gðxpÞ þ @x1 gðxpÞr5x1 þ @x2 gðxpÞr5x2 þ
1
2
@2

x1
gðxpÞr2

5x1
þ 1

2
@2

x2
gðxpÞr2

5x2
þ @x1@x2 gðxpÞr5x1 r5x2 ; ð41Þ

gðxp þ r6Þ ¼ gðxpÞ þ @x1 gðxpÞr6x1 þ @x2 gðxpÞr6x2 þ
1
2
@2

x1
gðxpÞr2

6x1
þ 1

2
@2

x2
gðxpÞr2

6x2
þ @x1@x2 gðxpÞr6x1 r6x2 : ð42Þ
Taking the appropriate linear combinations of Eqs. (37)–(42), the second-order derivatives in the synthetic equation Eq. (9)
can be expressed as
@2
x1

gðxpÞ ¼
X6

i¼1

b1;i½gðxp þ riÞ � gðxpÞ�; ð43Þ

@2
x2

gðxpÞ ¼
X6

i¼1

b2;i½gðxp þ riÞ � gðxpÞ�; ð44Þ

@x1@x2 gðxpÞ ¼
X6

i¼1

b3;i½gðxp þ riÞ � gðxpÞ�: ð45Þ
The explicit expressions of bp, i are obtained based on Eqs. (37)–(42). The coefficients have the property bp, i = bp,i+3 for
i = 1,2,3. The nonzero elements of bp, i for i = 1,2,3 are
b1;1 ¼ 1=r2
1; ð46Þ

b2;1 ¼ � cosðc1Þ cosðc2Þ=½r2
1 sinðc1Þ sinðc2Þ�; ð47Þ

b2;2 ¼ cosðc2Þ=½r1r2 sinðc1Þ sinðc2Þ�; ð48Þ
b2;3 ¼ cosðc1Þ=½r1r2 sin2ðc1Þ�; ð49Þ
b3;1 ¼ ½r3 cosðc2Þ � r2 cosðc1Þ�=½2r2

1r2 sinðc1Þ�; ð50Þ
b3;2 ¼ 1=½2r1r2 sinðc1Þ�; ð51Þ
b3;3 ¼ �1=½2r1r2 sinðc1Þ�: ð52Þ
The remaining coefficients for i = 4,5,6 can be estimated using the periodicity property.
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